p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.48C25, C24.488C23, C23.120C24, C42.549C23, C4.1842+ 1+4, (C4×D4)⋊98C22, C23⋊3(C4○D4), (C2×C4).50C24, (C4×Q8)⋊33C22, C4○2(C23⋊3D4), C4⋊D4⋊66C22, C23⋊3D4⋊19C2, C4⋊C4.288C23, (C23×C4)⋊33C22, (C2×C42)⋊48C22, C4○2(C23⋊2Q8), C23⋊2Q8⋊11C2, C22⋊Q8⋊80C22, C22≀C2⋊29C22, (C2×D4).294C23, C4.4D4⋊68C22, C22⋊C4.78C23, (C2×Q8).278C23, C42.C2⋊45C22, C4○2(C22.32C24), C22.19C24⋊15C2, C42⋊2C2⋊26C22, C42⋊C2⋊28C22, C22.32C24⋊29C2, C2.7(C2.C25), C2.13(C2×2+ 1+4), (C22×C4).1187C23, (C22×D4).587C22, C22.D4⋊38C22, C4○2(C22.33C24), C23.36C23⋊18C2, C22.33C24⋊29C2, (C2×C4×D4)⋊76C2, (C2×C4⋊C4)⋊131C22, (C2×C4○D4)⋊19C22, (C2×C4)○(C23⋊2Q8), C22.11(C2×C4○D4), C2.22(C22×C4○D4), (C2×C22⋊C4)⋊86C22, (C2×C4)○(C22.33C24), SmallGroup(128,2191)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.48C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=1, g2=b, ab=ba, dcd=fcf=ac=ca, ede=ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cg=gc, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 916 in 580 conjugacy classes, 390 normal (10 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C23×C4, C23×C4, C22×D4, C2×C4○D4, C2×C4×D4, C22.19C24, C23.36C23, C23⋊3D4, C22.32C24, C22.33C24, C23⋊2Q8, C22.48C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C25, C22×C4○D4, C2×2+ 1+4, C2.C25, C22.48C25
(1 11)(2 12)(3 9)(4 10)(5 32)(6 29)(7 30)(8 31)(13 20)(14 17)(15 18)(16 19)(21 28)(22 25)(23 26)(24 27)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 24)(2 21)(3 22)(4 23)(5 19)(6 20)(7 17)(8 18)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)
(1 16)(2 13)(3 14)(4 15)(5 24)(6 21)(7 22)(8 23)(9 17)(10 18)(11 19)(12 20)(25 30)(26 31)(27 32)(28 29)
(5 30)(6 31)(7 32)(8 29)(13 20)(14 17)(15 18)(16 19)(21 23)(22 24)(25 27)(26 28)
(1 3)(2 4)(5 30)(6 31)(7 32)(8 29)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 26)(22 27)(23 28)(24 25)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
G:=sub<Sym(32)| (1,11)(2,12)(3,9)(4,10)(5,32)(6,29)(7,30)(8,31)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,24)(2,21)(3,22)(4,23)(5,19)(6,20)(7,17)(8,18)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,16)(2,13)(3,14)(4,15)(5,24)(6,21)(7,22)(8,23)(9,17)(10,18)(11,19)(12,20)(25,30)(26,31)(27,32)(28,29), (5,30)(6,31)(7,32)(8,29)(13,20)(14,17)(15,18)(16,19)(21,23)(22,24)(25,27)(26,28), (1,3)(2,4)(5,30)(6,31)(7,32)(8,29)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,26)(22,27)(23,28)(24,25), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;
G:=Group( (1,11)(2,12)(3,9)(4,10)(5,32)(6,29)(7,30)(8,31)(13,20)(14,17)(15,18)(16,19)(21,28)(22,25)(23,26)(24,27), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,24)(2,21)(3,22)(4,23)(5,19)(6,20)(7,17)(8,18)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,16)(2,13)(3,14)(4,15)(5,24)(6,21)(7,22)(8,23)(9,17)(10,18)(11,19)(12,20)(25,30)(26,31)(27,32)(28,29), (5,30)(6,31)(7,32)(8,29)(13,20)(14,17)(15,18)(16,19)(21,23)(22,24)(25,27)(26,28), (1,3)(2,4)(5,30)(6,31)(7,32)(8,29)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,26)(22,27)(23,28)(24,25), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );
G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,32),(6,29),(7,30),(8,31),(13,20),(14,17),(15,18),(16,19),(21,28),(22,25),(23,26),(24,27)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,24),(2,21),(3,22),(4,23),(5,19),(6,20),(7,17),(8,18),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32)], [(1,16),(2,13),(3,14),(4,15),(5,24),(6,21),(7,22),(8,23),(9,17),(10,18),(11,19),(12,20),(25,30),(26,31),(27,32),(28,29)], [(5,30),(6,31),(7,32),(8,29),(13,20),(14,17),(15,18),(16,19),(21,23),(22,24),(25,27),(26,28)], [(1,3),(2,4),(5,30),(6,31),(7,32),(8,29),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,26),(22,27),(23,28),(24,25)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | ··· | 2O | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | ··· | 4AB |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 | C2.C25 |
kernel | C22.48C25 | C2×C4×D4 | C22.19C24 | C23.36C23 | C23⋊3D4 | C22.32C24 | C22.33C24 | C23⋊2Q8 | C23 | C4 | C2 |
# reps | 1 | 3 | 6 | 6 | 3 | 6 | 6 | 1 | 8 | 2 | 2 |
Matrix representation of C22.48C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 3 | 0 | 4 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 4 | 0 |
0 | 0 | 3 | 1 | 4 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 1 | 1 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 3 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 4 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,3,0,0,0,0,0,1,0,0,0,0,4,4,1,4,0,0,0,0,0,4],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,4,4,0,0,0,0,1,0,4,0,0,0,1,0,3,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,4,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3] >;
C22.48C25 in GAP, Magma, Sage, TeX
C_2^2._{48}C_2^5
% in TeX
G:=Group("C2^2.48C2^5");
// GroupNames label
G:=SmallGroup(128,2191);
// by ID
G=gap.SmallGroup(128,2191);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,387,1123,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=1,g^2=b,a*b=b*a,d*c*d=f*c*f=a*c=c*a,e*d*e=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*g=g*c,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations